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Reduced-Order Modeling of an Elastic Panel in Transonic Flow
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Reduced-order modeling is applied to a transonic aeroelastic panel that experiences oscillatory motions of a
normal shock. Two-dimensional, transonic inviscid � ow over an elastic panel produces transonic limit-cycle oscil-
lationsover a range of panel parameters. Proper orthogonaldecomposition, in concert with domaindecomposition,
is shown to produce an accurate reduced-order model for the coupled aeroelastic system. Panel � utter in the tran-
sonic regime results in a large streamwise movement of a transonic normal shock across the panel surface. The
accuracy and order reduction of the reduced-order model is quanti� ed. In addition, the computational savings for
this implementationis documented, and the robustness of the reduced-order model to changes in a panel parameter
is explored.

Nomenclature
C = constraint type
D = plate stiffness, Es h3=12.1 ¡ º2/
E, F = vector of X-axis and Y -axis � uxes
Es = Young’s modulus
ET = total energy, ET d =½1u2

1
F = modi� ed � ow� eld expression for time-accurate

Newton’s iterations
Fs = function evaluation for Newton’s iterations
G = vector valued function for overlapping domains
h = panel thickness
Oi = unit vector, x direction
Oj = unit vector, y direction
L = reference length
M = Mach number; number of degrees of freedom (DOF)

for reduced-ordermodel
N = number of DOFs for full system
P = pressure, Pd=½1u2

1
P = array of pressure differentialson panel
Q = number of snapshots used in proper orthogonal

decomposition/reduced-ordermodel
R = � ux calculation from the Euler equations
S = matrix of � ow� eld data, or snapshots
S = vectors of s values on panel
s = panel de� ection speed, Pw
T = vector mapping overlapping variables
t = time, tdu1=L
U, OU = full- and reduced-ordervector of conserved

� ow variables
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u, v = � uid velocity components,ud=u1 and vd=v1
V = matrix of eigenvectorsof ST S
W = vectors of w values on panel
w = normal panel de� ection, wd=L
w, Ow = full- and reduced-ordervector for a single � uid variable
x , y = spatial coordinates, xd =L and yd=L
Ys = structural state array, [S; W]T

y, Oy = � ow variables U and OU, augmented with Lagrange
multipliers

® = expression containing structural parameters
° = ratio of speci� c heats, 1:4
1t = global time step determined to preserve stability

for the smallest node spacing
3 = matrix of singular values of ST S
¸ = nondimensionaldynamic pressure, ½1 L=½sh
¸i = Lagrange multiplier for i th constraint
¹ = mass ratio, ½1u2

1 L3=D
º = Poisson’s ratio 0.3
½ = density, ½d=½1
½s = structural density
9 = reduced-ordermapping matrix

Subscripts

d = dimensional quantity
i = constraint index
S = section number within domain
s = structural quantity
t = time derivative
x , y = spatial derivative
¸ = overlapping domains
0 = base � ow
1 = freestream quantity, dimensional

Superscripts

n = index to increment discrete time steps
over = overlapping portion of domain
º = index to increment Newton iterations

Introduction

R EDUCED-ORDER modeling for transonic aeroelastic prob-
lems is challenging because of unsteady movement of normal

shock waves. Reduced-order methods that linearize the governing
338
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equations will produce errant results if the shock moves by a sig-
ni� cant amount. Recent work showed that reduced-order mod-
els (ROMs) based on proper orthogonal decomposition (POD)
can accurately handle the moving shock case,1¡3 but a domain
decomposition(DD) technique is necessary to overcomedif� culties
in translating discontinuities in the � ow� eld. The POD/ROM/DD
isolates the region of the � ow� eld containing the shock and models
the region, either at full order, or with a special POD/ROM con-
structed with suf� cient data to allow shock motion.

In this paper, the DD approach with POD/ROM is applied to
an aeroelastic panel in cross� ow. A nonlinear coupling of the two-
dimensional Euler equations and the von Kármán plate equation
simulates the dynamics of � ow over a � exible panel. The inviscid
� ow produces transonic limit-cycle oscillations (LCO) for certain
panel parametersand freestreamconditions.Panel � utter in the tran-
sonic regime further produces a transonic shock that traverses the
panelsurface.Previouswork4 on thisaeroelasticpanelcon� guration
neglected reduced-ordermodeling of the transonic case because of
the dif� culties in handlingmoving shocks.The objective is to apply
POD/ROM/DD to the transonicaeroelasticpanel and assess the per-
formance of the reduced-ordersystem in accuracy, order reduction,
and computational expense. The robustness of the POD/ROM/DD
to changes in panel dynamic pressure ¸ is explored to evaluate the
model’s utility for design analysis.

Numerical Formulation
In this section, the governingequationsfor the structuraland � uid

dynamics are described,DD is developed,and an overview of POD
is provided.Emphasis is given to the reduced-orderimplementation
of the � uid dynamics model, which includes a developmentof con-
strained optimization required to couple adjacent domains across
internal boundaries.

Structural Dynamics Equations

Two-dimensional � ow over a semi-in� nite, pinned panel of
length L was considered.Panel dynamics were computed with von
Kármán’s large-de� ection plate equation (see Ref. 5), which was
cast in nondimensional form using aerodynamic scales L and u1
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Panel de� ections w.x/ and velocities s.x/ D Pw.x/ were computed
as a functionof x and t , given the values of the parameters¹, ¸, and
h=L, such that

® D .6¹=¸/.h=L/¡2.1 ¡ º2/ (2)

Two boundary conditions were enforced at the panel endpoints
.x D § 1

2 /: w D 0 and @ 2w=@x2 D 0.
The structural dynamics equations (1a–2) were discretized and

placed in � rst-order form to facilitate numerical integration.Spatial
discretizationwas accomplishedwith second-orderaccurate,central
differences, and the midpoint rule was used to compute the integral
in the de� nition of Nx . A uniform distribution of grid points was
assumed. A modi� ed central-differenceformula explicitlyenforced
the end conditions.Excludingthe endpointstates, the discretestruc-
tural variables were collocated into arrays W and S and then into
the structural state Ys . The values of .1=° M2

1 ¡ P/ at panel grid
points were also collected into array P. With these de� nitions, the
structural equations took the � rst-order form
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where I is the identity matrix and L N is a nonlinear matrix operator
given by
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Here, @=@x represents central-difference,spatial discretization.
Equations (3) and (4) were integrated in time using an Euler

implicit method4 that was � rst-order accurate in time. The Euler
implicit method used the value for pressure provided by a coupled
� uid model:
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D 0 (5)

where Y D Yn C 1
s . The nonlinearity in Eq. (5) was accounted for

through subiteration. Y was iteratively computed using the chord
method, with L N evaluated about an unde� ected panel state, as
represented by L0

N :
Á

I ¡ 1t

"
0 L0

N

I 0

#!

Yº C 1 ¡ Yº D ¡Fs.Yº / (6)

The matrix L0
N was computed and lower–upper (LU) decomposed

once at the start of the time-integration procedure to increase the
ef� ciency with which Eq. (6) was solved. The chord method con-
verged quickly for the transonic cases considered due to the small
de� ections of the panel (<2% of the panel length). Four subiterates
applied at each time step were generally suf� cient to force Fs to be
near machine zero.

A � ne structuralgrid of 101 interior points (103 points, including
the endpointsof the panel, where w D s D 0 was enforced)was used
to discretize the panel. The large number of structural grid points
reduced the effects of translating � uid values to structural nodes.

Fluid Equations

The dynamics of � uid � ows are governed by the Navier–Stokes
equations for viscous � ow, or the Euler equations for inviscid � ow.
The two-dimensionalEuler equations are given here in strong con-
servation form6:
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Here, ½u is the x-direction momentum, ½v is y-direction momen-
tum, and ET is total energy per unit volume.

The solution of the � ow� eld was approximated using a � nite
volumeapproach.It requiredthe integralformof theEuler equations
shown here6:

d

dt

Z

V

U dV C
Z

@V

.EOi C F Oj/ ¢ d NS D 0 (9)

Solutions of the full system were obtained by numerically solving
the integral Euler equations for small volumes within the � ow� eld.
Spatial discretization results in a computational mesh with many
small volumes, or cells. Stability of the numerical scheme necessi-
tated small cell sizes. Each � uid variable at every cell represents a
separate degree of freedom (DOF).

Within each cell, the integral form of the Euler equations reduce
to the following, assuming no grid deformation,

d
dt

Ui; j C
X

sides

.Ei; j
Oi C Fi; j

Oj/ ¢
d NS i; j

dAi; j
D 0 (10)
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The � ux terms Ei; j and Fi; j were computedusing � rst-orderRoe av-
eraging (see Ref. 6). Row-by-row ordering is used to collocate � ow
variables at each spatial cell location to a correspondinglocation in
a column vector, producingan overall vector of � ow variablesU.t/.

Time integrationacross the computationalmesh is used to obtain
� ow solutions.This is accomplishedwith a � rst-order-accurate,for-
wardEuler approximation.Small time steps combinedwith the large
number of DOF make design analysis and control impractical with
this type of numerical method.

Because the Euler equations are linear in the time derivative, and
quasi linear in the spatialderivative,6;7 the spatialderivativesand the
time derivatives in Eq. (7) can be separated to form an evolutionary
system. To accomplish this, the spatial terms are grouped to form a
nonlinear operator R acting on the set of � uid variables. The � uid
dynamics from Eq. (10) can then be expressed as

dU.t/

dt
D R[U.t/] (11)

Equation (11) is referred to as the full-system dynamics.
The paneldynamicswere enforcedusinga transpirationboundary

conditionfor (¡ 1
2

< x < 1
2
, y D 0) (Refs. 8 and 9). The transpiration

boundary condition replaces the solid wall with blowing or suc-
tion designed to mimic the effect of a solid boundary. For a static
case, the no-� ow-through condition at a solid wall implies that the
� ow momentum is tangent to the solid surface for all of the cells
adjacent to the surface. Flow momentum is injected (blowing) or
removed (suction) such that the � ow momentum at the solid surface
is turned (via vector addition)as though the solid wall were present.
For dynamic cases, additional blowing is required because the wall
velocity imparts additional momentum to the � ow, in excess of the
momentum needed to turn the � ow tangent to the solid surface.8;9

Transpiration boundary conditions are valid for small wall de� ec-
tions, and they are a convenientway to model dynamic solid bound-
aries without moving grids. Moving grids require special treatment
in the POD/ROM formulation.10

The � nite volume � uid solver and the transpiration boundary
condition were validated using both computational results and ex-
perimental data. Validation of subsonic performance was accom-
plished by comparison with experimental data.11 Transonic perfor-
mance was validatedby comparisonwith results from COBALT.60,
a widely used production code. Validation of the aeroelastic panel
response is addressed later in the paper.

Grid Generation

The elastic panel model was inserted into the solid boundary at
¡ 1

2
< x < 1

2
and y D 0. A square domain of dimension ¡23:668<

x < 23:668 and 0 < y < 24:6 was used for this research. (The panel
length was one nondimensional length unit.) The large domain was
intendedto containall of the � ow dynamics,and the arbitrarychoice
of approximately 25 chord lengths in all directions mimics the do-
main used by other authors for the same problem.4;12 Extending the
domain to include all � ow dynamics facilitates the use of character-
istic boundary conditions for the outer portion of the domain. The
resultsmay not be generalbecausethedomain size impacts the panel
response.The structuredgrid used 141 nodesalong the solid surface
and 116 nodes extending to the freestream. The spacing of the grid
points increased geometrically from the solid wall in the normal
direction. In the streamwise direction, the grid spacing was held
constant at 1wall D 0:0125 over the entire panel and was increased
geometrically upstream and downstream of the panel position.

Fluid–Structure Coupling

The structuralsystemfromEq. (3)was looselycoupledto the � uid
system from Eq. (11) through the transpirationboundary condition.
The structural solver was explicitly stepped forward in time by 1t
from time level tn to time level tn C 1 using the pressure value on the
panel from the � uid system. An extrapolated panel pressure value
was used to avoid time-laggingerrors that can arise in this coupling
scheme.12 Pn (the pressurevalueat time leveln) was used to estimate
Pn C 1 by

Pn C 1
ex D Pn C 1Pn (12a)

1Pn D Pn ¡ Pn ¡ 1 (12b)

Pn C 1
ex D 2Pn ¡ Pn ¡ 1 (12c)

Pn C 1
ex was used to update the panel de� ection and velocity Yn C 1

s ,
which were incorporatedinto the transpirationboundary condition.
The � uid system was then time stepped to update the � ow� eld to
Un C 1 . This sequencewas repeatedlyperformedto integratethe cou-
pled system and produce time-accurate results.

The � uid system dominated the computation time required to
producesolutionsfor thecoupledsystem.Time-stepsizewas limited
by the stability of the � ow solver, and the number of DOF for the
� ow solver (64,400) was far larger than the structural model (202).
As such, the focus of this research was to couple an ROM of the
� ow� eld to the full-order structural model and produce an accurate
aeroelastic panel response with less computational expense.

Domain Decomposition

The solutiondomainwas dividedinto sectionsto facilitatethe use
of POD with the moving transonic shock. Isolation of the transonic
shock was the primary goal of the DD. Because the transonicshock
was always attached to the panel, the region of the � ow� eld directly
above the panel was identi� ed as the shock region. In addition, DD
improved the computationalperformance when obtaining unsteady
solutions from the reduced-order solver. Different time steps were
employed for these different regions of the � ow� eld to minimize
the number of solver iterations.13;14

The solution domain was divided into three regions to form the
POD/ROM/DD. The geometricshapeof the regiondid not in� uence
the solver performance, and so regions formed by the intersection
of rectangles were used for simplicity. The results presented were
generated using the DD depicted in Fig. 1. The large outer region is
denoted section I and is called the far � eld. Section II is the middle
region whose outer boundary is de� ned by three line segments.
These line segments are the sides of a rectangle with corners at the
(x , y) pairs (¡3, 0), (¡3, 4), (2.5, 4), and (2.5, 0). Section II is called
the near � eld, and it will be solved more frequently than the far � eld
to update the internal boundary shared with section III. Section III
contains the � ow over the panel. Its outer boundary is a rectangle
with corners at the (x , y) pairs (¡0.7, 0), (¡0.7, 0.65), (0.7, 0.65),
and (0.7, 0) and is the aforementionedshock region. A small shock
forms on the upstream portion of the panel, and traverses over a
large portion of the panel’s length. This is the moving shock of
interest for this analysis, and it is con� ned entirely to section III.
No overlap is included in this decomposition.Domain overlap will
be addressed later. Section I contains 9300 cell centers, section II

Fig. 1 DD.
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contains 4886 cell centers, and section III contains the remaining
1914 cell centers.

Because the domain was divided into three sections, analysis for
the POD/ROM/DD involved solving three smaller � uid problems
that were linked by internal boundaries. Internal boundaries were
handled with ghost cells that were � lled with the corresponding
values from the adjacent domain. Domain overlap was necessary
under certain conditions that will be outlined later in the paper. The
DD approach produced � exibility in choosing the set of snapshots
and numberof modes used to create the POD/ROM for each section.

Proper Orthogonal Decomposition

POD is a technique to identify a small number of DOF that ad-
equately reproduce the behavior of the full system. The greater the
reduction in DOF, the faster the computer produces a solution for
each time step. Time-step size for stability can also be improved
using POD because the application of POD modes exclude some
of the high-frequency content that brings instability. A summary
of POD as it applies to a spatially discretized � ow� eld follows. A
detailed description of POD is available in the literature.15;16

For simplicity, consideronly one � uid variablew.t/. Because the
value of w.t/ is obtained using numerical approximation, w.t/ is
spatiallydescritizedusing N nodes and collocated into a large array
denoted w.t/. For this � uid variable, the full-system dynamics in
Eq. (11) are depicted hereafter,

dw
dt

D R.w/ (13)

POD produces a linear transformation 9 between the full-system
solution w, and the reduced-ordersolution for this � uid variable Ow,
given by

w.t/ D W0 C 9 Ow.t/ (14)

Note that 9 is not time varying where w and Ow are functions of
time t . The POD reduced-ordervariable Ow.t/ represents deviations
of w.t/ from a base solution W0. The subtraction of W0 will result
in zero-valued boundaries for the POD modes wherever constant
boundary conditions occur on the domain.

9 is constructed by collecting observations of the solution
w.t/ ¡ W0 at different time intervalsthroughoutthe time integration
of the full-system dynamics. These observations are called snap-
shots and are generally collected to provide a good variety of � ow-
� eld dynamics while minimizing linear dependence.The snapshot
generation procedure is sometimes referred to as the POD training
period.2

A total of Q snapshots are collected from the full-system
dynamics. These are vectors of length N . The set of snapshots de-
scribe a linear space that is used to approximate both the domain
and the range of the nonlinear operator R. The linear space is de-
� ned by the span of the snapshots.17 POD identi� es a new basis for
this linear space that is optimally convergent.15 To identify the POD
basis, the snapshots are compiled into a N £ Q matrix S, known
as the snapshot matrix. The mapping function 9 is then developed
using

ST SV D V 3 (15)

9 D SV (16)

Here, 3 is the diagonal matrix of eigenvalues.To eliminate redun-
dancy in the snapshots, the columns of V corresponding to very
small eigenvalues in 3 are truncated. The matrix of eigenvalues 3
is also resized to eliminate the rows and columns corresponding to
the removed eigenvalues.If Q ¡ M columns of V are truncated, the
resulting reduced-ordermapping 9 will be an N £ M matrix. This
reduced-order mapping is a modal representation of the � ow� eld.
The modes are the columns of 9 that are discretized spatial func-
tions � xed for all time. The vector Ow.t/ is a time dependent set of
coef� cients representing the coordinates of w.t/ projected into the
truncated linear space described by the POD basis.

The � nal step is to recast the governing equations to solve for
the coef� cients. Several methods are contained in the literature,2

and selection of the appropriate implementation depends on the
solution strategy. Both implicit and explicit time-accurate method-
ologies were used in this research.1¡3 Implicit time stepping was
an ef� cient way to handle the nonshocked regions of the domain
decomposed � ow� eld (sections I and II). Here the dynamics were
benign enough that the reduced-orderJacobian requiredno updates.
Explicit time stepping was used for the shock region because the
moving discontinuityin section III was too strong a nonlinearityfor
the implicit scheme to capture ef� ciently.3

Explicit Implementation

Explicit integration for the full-order solver was accomplished
using the � rst-order-accurate,forward Euler time integration:

wn C 1 D wn C 1t R.wn/ (17)

For this analysis, a non-Galerkin approach was used for simplicity.
The non-Galerkin approach,also known as the subspace projection
method (see Ref. 18), uses the full-system dynamics and a forward
difference approximation to yield the following reduced-order� ow
solver:

Own C 1 D Own C 1t3¡1.V T V /¡1V T ST R.SV Own/ (18)

The pseudoinverseof V is shown assuming modal truncationis em-
ployed. The inverse of 3 and pseudoinverse of V exist assuming
modal truncation is employed to eliminate the zero-valued eigen-
values of ST S and their corresponding eigenvectors.16 Notice that
3¡1.V T V /¡1V T ST from Eq. (18) is equivalent to .9T 9/¡19T .

The solution to the Euler equations in two dimensions re-
quires simultaneous solution for four � uid variable vectors w.t/.
The reduced-order mapping components for each � uid variable
(S and V ) were collocatedas blocks into largermatricesof the same
name.This producedthe followingvariantofEq. (18),which applies
to all four � uid variables simultaneously:

OUn C 1 D OUn C 1t3¡1.V T V /¡1V T ST R.SV OUn/ (19)

The subspace projection method relied on the full-system function
evaluation R at each time integration step. As such, the order of
each integration step was not actually reduced.Subspace projection
allowed for study of POD accuracy and order reduction without
the use of Galerkin projection. Also, this reduction technique can
greatly increase the time-step size allowed for stability; therefore,
the total numberof time steps required for the explicit time-accurate
solver to reach steady state can be signi� cantly reduced.2

Implicit Implementation

A chordmethod implementationwas used to obtain time-accurate
solutions implicitly. The chord method is essentially Newton’s
method with numerically approximated Jacobians. Although the
equations governing the reduced-orderoperator OR. OU/ are never ex-
plicitly obtained, the value of the reduced-order operator at any
time can be obtained from Eq. (19) using the full-system function
evaluation R:

OR. OU/ D 3¡1.V T V /¡1V T ST R.SV OU/ (20)

Consider the implicit time integration function F :

F.Un C 1/ D Un C 1 ¡ Un ¡ 1t R.Un C 1/ (21)

The value of Un C 1 that results in F.Un C 1/ D 0 is the solution for the
� ow� eld at time tn C 1t from Un . The solution is readily obtained
from Newton iterations.The Newton iterations (for subiterate from
º to º C 1) at reduced order are shown hereafter:

OF. bUº / D 3¡1.V T V /¡1V T ST F .Uº / (22a)

1 OU D
µ

d OF. OU/

d OU

¶¡1

OF. bUº/ (22b)

OUº C 1 D OUº C 1 OU (22c)

Uº C 1 D U0 C 9 OUº C 1 (22d)

Notice that the full-systemfunctioncall is requiredfor each Newton
iteration. The reduced-order Jacobian is not updated between
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Newton iterations to reduce computationalcost. The reduced-order
Jacobian can be quickly identi� ed using the full-systemdynamics,

dF .U/

d OU
D d

dÛ
[U ¡ Ulast ¡ 1t R.U/] (23a)

U D 9 OU C U0 (23b)

dF.U/

d OU
D 9 ¡ 1t

dR.U/

d OU
(23c)

d OF. OU/

d OU
D d

d OU
[3¡1.V T V /¡1V T ST F.U/] (24a)

d OF. OU/

d OU
D 3¡1.V T V /¡1V T ST dF .U//

d OU
(24b)

For computationalpurposes,it was ef� cient to obtainthe reduced-
order Jacobian numerically from Eq. (24b). The Jacobian was ob-
tainedusinga central-differenceapproximation.The computationof
dF.U/=d OU only required2M functioncalls (M being the numberof
reduced-order variables). The reduced-order Jacobians for domain
sections I and II were obtained using the initial � ow� eld. They did
not require recalculation throughout the entire time integration.

Implicit Analysis with Overlapping Domains

Constraints must be introduced to enforce smoothness on the in-
ternal boundary between adjacent domains modeled with implicit
POD/ROMs. The domain coupling provided by the use of ghost
cells and the full-system dynamics is not suf� cient to ensure con-
tinuity along internal boundaries for the implicit implementation.
To formulate the technique, consider the case where the internal
boundary between two adjacent regionsoverlap, such that the outer
boundary of one region extends beyond the inner boundary of the
adjacent region by a few cells. When computing solutions for each
individualdomain at reducedorder, the � ow� eld from both domains
should match in the overlappingportion of the � ow� eld. When this
does not occur, a constraint can be included to force the � ow� eld
sections to match in the overlap region.

Consider US1 and US2 as adjacentdomains with a shared internal
boundary0. The domains overlap on the internal boundary,and the
sections combine to form the � uid vector U,

U D
µ

US1

US2

¶
(25)

Two constraint options are considered. The � rst constraint C1 can
be written as

C1.U/ D
X

k 2 0

U.k/S1 ¡ U.k/S2 D 0 (26)

Here, k represents the index number of the � uid variables within
the � ow vector US that correspond to the overlapping region 0.
This constraint is similar to requiring the mean difference be zero
on the boundary, and C1 approximates the L1 norm. Notice that
the absolute value is not included. This weakens the constraint be-
cause negative errors can be canceled by positive errors of equal
magnitude; however, neglecting the absolute value improves com-
putational performance. The solver formulation will use the � rst
and second derivatives of the constraints [refer to Eq. (34)]. When
the C1 constraints are used without the absolutevalues, the � rst and
second derivatives are a constant function and zero, respectively.
The C 1 constraint formulation allows the Jacobian to be precom-
puted before solver integration, signi� cantly reducing computation
time. If an absolute value is introduced, the � rst and second deriva-
tives are both functions of the � ow variables, and precomputing the
Jacobian is not possible. Instead of using the absolute value on the
C1 constraint, the squared difference is constrained to zero, which
is written as

C2.U/ D
X

k 2 0

[U.k/S1 ¡ U.k/S2]2 D 0 (27)

The C2 constraint formulation is similar to requiring the variance
to be zero on the boundary, approximating the L2 norm. Similar
to including the absolute value on the C1 constraint, the use of the
C2 expression provides a much stronger constraint, and the com-
putational load is increased because the � rst and second derivatives
are functionsof � ow variables.The derivativeexpressionsare much
simpler with C 2 constraints than the case of absolute value on the
C1 constraints, which is why this formulation is preferred.

For the time-accuratecase, a functional`.U/ is de� ned such that

d`.U/

dU
D F.U/ (28)

where F comes fromEq. (21). Solving for the criticalvaluesof `.U/
is equivalent to solving F.U/ D 0, that is, � nding the � ow solution
of interest.

C1 Constraints

With reference to the function F from Eq. (21) and the functional
`.U/ from Eq. (28), a series of C 1 constraints were introduced to
enforce equality within a subset of the overlap region. Lagrange-
constrained optimization minimizes `.U/ subject to the constraints
through the use of Lagrange multipliers ¸i , introduced as addi-
tional DOF. One Lagrange multiplier was used for each constraint.
Lagrange-constrainedoptimization19 modi� es `.U/ by adding the
linear constraints to form the functional Q.y/:

Q.y/ ´ `.US/ C
IX

i D 1

¸i

¡
US ¡ U over

i

¢T
Ti (29)

The solution vector is augmented to include the ¸i ,

y D

2

666664

US

¸1

¸2
:::

¸I

3

777775
(30)

For each constraint, the summation operator in Eq. (26) was im-
plemented by taking the dot product of a vector Ti with the vector
difference .US ¡ Uover

i /. For some number of constraints I , a total
of I vectors Uover

i and Ti were required with the same dimensions
as US . For the i th constraint, Uover

i contained � ow values from a
subset of the overlapping portion of the adjacent domain section.
The goal of the i th constraint was to force US to match the � ow
values in Uover

i . These � ow values were collocated to the vector lo-
cations in Uover

i that corresponded to the identical locations within
the overlapping region of US . Ti contained the number 1 in each
� uid variable location corresponding to the selected � uid variables
from the adjacent domain, collocated into Uover

i . Zeros were placed
everywhereelse in T . The dot productof T with .US ¡ Uover

i / tended
to zero when the � ow variables in US matched Uover

i . Otherwise, the
dot product produced a small scalar residual. Fluid values for Uover

i
could be chosen as required to produce a reasonable solution. Each
constraintcouldapply to any combinationof the four � uid variables,
over any portion of the overlapping region.

The critical values of Q are the values of US and ¸i such that

G.y/ D dQ.y/

dy
D

2

6666666666664

F.US/ C
IX

1

¸i Ti

¡
US ¡ Uover

1

¢T
T1

¡
US ¡ Uover

2

¢T
T2

:::
¡
US ¡ Uover

I

¢T
TI

3

7777777777775

D [0] (31)

As long as the constraints are linearly independent, and the � uid
problem has a unique solution, the critical value will be the unique
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minimizing function for Q (Ref. 19). The reduced-order mapping
includes the Lagrange multipliers,

y D

2

666664

9S [0] [0] [0] [0]

[0] 1 0 0 0

[0] 0 1 0 0

[0] 0 0
: : : 0

[0] 0 0 0 1

3

777775
¢

2

666664

OUS

¸1

¸2
:::

¸I

3

777775
(32)

which is rewritten as

y D 9¸ Oy (33)

Newton iterations are used to solve the reduced-order system for
Oy. The � ow� eld is obtained by expanding OUS with reduced-order
mappings for each section, after which the ¸i are discarded. The
full-order Jacobian dG.y/=dy, shown hereafter,

2

66666666664

dF.US/

dUS
C

IX

1

¸i
d2Ci .US/

dU2
S

dC1.US/

dUS
: : :

dC I .US/

dUS

dC1.US/

dUS
0 : : : 0

:::
:::

: : :
:::

dC I .US/

dUS
0 : : : 0

3

77777777775

(34)

is used to obtain the reduced-orderJacobian, as follows:

d OG. Oy/

dOy
D

¡
9T

¸ 9¸

¢¡1
9T

¸

dG.y/

dOy
(35)

For computationalreasons, this formulation[similar to Eq. (24b)]
is used to identify the reduced-orderJacobian from the full system.
For C1 constraints,dG.y/=dOy D [dG. y/=dy]9¸ is as follows:

dG.y/

dOy
D

2

6666666664

dF.US/

d OUS

T1 T2 : : : TI

T T
1 9S 0 0 : : : 0

T T
2 9S 0 0 : : : 0

:::
:::

:::
: : :

:::

T T
I 9S 0 0 : : : 0

3

7777777775

(36)

where dF.US/=d OUS is obtained from dR.US/=d OUS by using
Eq. (23c). Notice that this expression is independent of the solu-
tion vector y. It can be precomputed and does not require updates
during the time integration.

C2 Constraints

A modi� cation to the development is required to use C 2 con-
straints. This modi� cation is presented hereafter. Again, a series of
constraints are considered. The i th constraint becomes

C2
i D

¡
US ¡ Uover

i

¢
¢
¡
US ¡ Uover

i

¢
D 0 (37)

and the Lagrangian is minimized as follows:

Q.y/ D `.US/ C
IX

i D 1

¸i

¡
US ¡ Uover

i

¢T ¡
US ¡ Uover

i

¢
(38)

G.y/ D dQ.y/

dy
D [0] (39)

G. y/ D

2

666666666664

F.US/ C 2
IX

1

¸i

¡
US ¡ Uover

i

¢

¡
US ¡ Uover
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1
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US ¡ Uover

2
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US ¡ Uover
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:::
¡
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I
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I

¢

3
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(40)

The Jacobian for the Newton iterations comes from Eq. (35), where
dG.y/=dOy is found to be

2

66666664

dF.US/

d OUS

C 2
IX

i D 1

¸i 9
over
i : : : 2

¡
US ¡ Uover

i

¢
: : :

:::
:::

:::
:::

2
¡
US ¡ Uover

i

¢T
9S 0 0 0

:::
:::

:::
:::

3

77777775

(41)

The 9over
i term is simply the matrix 9S overwrittenwith zero for any

mode value not pertaining to the subset of the overlap region and
the � uid variables constrained by the i th constraint. Unfortunately,
this implementationrequires that the Jacobian be reformed for each
Newton iteration because dG.y/=dOy is now a function of the un-
knowns US and ¸i . Even though dF.US/=d OUS will not need to be
recomputed, the additional multiplies within the 2.US ¡ Uover

i /T 9S

term and the

2
IX

i D 1

¸i 9
over
i

term will make this implementation less ef� cient.

Results
The full-order, transonic LCO behavior is described � rst, fol-

lowed by a discussion of the POD/ROM/DD solver implemen-
tations. Observations are made on the effectiveness of overlap,
boundary-constraint types, and domain-speci� c time steps. The ac-
curacy, order reduction, and computational savings for a variety of
implementations are discussed. Finally, the robustness is explored
by observing the change in solver accuracy as panel dynamic pres-
sure is modi� ed.

Full-System Transonic LCO

Variations in panel dynamic pressure ¸ constitute the parameter
space of interest for the transonic panel analysis. Increased val-
ues of ¸ correspond to decreased panel stiffness. Panel response
at Mach 0.95 across this parameter space is illustrated in Fig. 2.
For comparison, Fig. 2 contains data obtained from the literature
for the same problem.4;20 The maximum panel de� ection amplitude
at the one-half-chord point is shown for a range of ¸. For ¸ less
than 1750, panel stiffness was suf� cient to prevent time oscilla-
tory behavior. Any initial panel de� ection and velocity eventually
damped to a static de� ection state, with the panel de� ected either
upward or downward depending on the initial condition. In Fig. 2,
the two static de� ectionbranchesare evident for¸ < 1750.Valuesof
¸ above 1750 resulted in oscillatorypanel behavior with the proper
initial condition,otherwise the panel de� ection settled at the down-
ward de� ected static solution. Figure 2 illustrates how the upper
static branch evolves into LCO, whereas the lower branch remains
static when 1750> ¸ > 2500. The midchord amplitude of the up-
ward panel de� ection during LCO is about 15% lower than other
cases reportedin the literature.The dissipationin the � rst-orderRoe
solver provides more damping of the high-frequencypanel de� ec-
tions than the higher-ordersolversused in the archivedpublications.
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This additionaldamping is the primary cause of the muted panel de-
� ections.The mutingof the upwardpanel de� ection is not as promi-
nent in the static case. Otherwise, the dynamic and static behavior
of the aeroelastic model for both static and LCO solutions from
the full-system simulation are shown to be in good agreement with
results found in the literature for the same problem.4;20 The muted
panel de� ections were not a concern because the transonic moving
shockwas the nonlinearfeature for analysis.The POD/ROM will be

Fig. 2 Panel response with changing dynamic pressure.

a)

b)

c)

d)

Fig. 3 Moving transonic shock.

shown to match the full system accurately, and a full-system model
with higher � delity could be inserted without loss of generality.

With ¸ D 2500, the full-systemsimulationproducedthe transonic
LCO shown in Figs. 3 and 4. A portion of the LCO cycle exhibits a
moving shock.21 The panel de� ections correspondingto the portion
of LCO containing a moving shock are shown in Fig. 3. The plot
of CP shows the shock motion progressing from Figs. 3a–3d. The
dissipationin the � rst-orderRoe’s solver slightlysmears the moving
shock. A stronger shock also developsat the end of the panel during
this portion of the LCO. Because this was a stationary shock, it did
not pose a signi� cant problem for the POD/ROM/DD.

Figure 4 shows the panel time history at the three-quarter-chord
point. Transonic LCO was established very quickly from a small
panelde� ectionin freestreamconditions.The initialpanelde� ection
was a small, downward sinusoidalpanel de� ection of 1 £ 10¡3 . The
LCO was well establishedby 15 s, which was about one-half of the
period of a singlepanel oscillation.This extremely rapid LCO onset
makes time integration an ef� cient implementation for analysis of
this case. Figure 4b is a phase plot of panel velocity and position at
three-quarterchord.Strong nonlinearitiesare evident in the upswing
of the panel (at point I), and again after the crest at points II and III
on the downswing.These appearas loops or peaks in the phase map.

Solver Implementation

Two cases of the POD/ROM/DD were considered.The � rst case
modeled the shock region at full order, the second case modeled
it with POD/ROM. The far � eld (section I) and the near � eld
(section II) used the same ROM for both cases. Both the far and
near � elds used an implicit, time-accurate solver, and both were
modeled with POD/ROMs trained by 100 snapshots taken at evenly
spaced intervals over one complete cycle of the panel LCO. Five
modes per � uid variable were adequate for both sections, resulting
in 20 DOF in the POD/ROM for each. The far- and near-� eld do-
mains were overlapped by three cells everywhere on the common
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a)

b)

Fig. 4 LCO onset.

Fig. 5 C1 constraints.

boundary. Constraints were required when the time steps were dif-
ferent, otherwise the near and far � eld were effectively modeled
with a single domain using � ve DOF per � uid variable.

Both C 2 and C 1 constraints were implemented on the shared
boundary between the far and near � elds. A single C 2 constraint on
density over the entire overlappingregion was suf� cient to produce
accurate results. To use C1 constraints,a careful selectionof subsets
within the overlap region was required.A series of � ve subsets,with
one C1 constraint for each subset, were used to couple the near- and
far-� eld domains. Density was the constrained � uid variable. Each
subset contained a vertical column of three cells, positioned on the
top portionof the internalboundaryas shown in Fig. 5. Each vertical
strip is referred to as a “staple.” The x locations for each staple were
¡1, ¡0.25, 0, 0.25, and 1. Each staple comprised a single cell in
width and three cells in height to traverse the overlap region in the
vertical direction.

Solver implementation produced several insights regarding the
effective use of C1 constraints. First, the size of the subsets played
a critical role in the effectiveness of the C 1 constraints. Also, the
position of each constrained subset was determined by the � ow

dynamics. In general, regions of high dynamics on the boundaryre-
quired some form of constraint,whereas regionsof lower dynamics
required none. The careful placement of a few localized C1 con-
straints could stabilize the entire boundary.

When the shock region was modeled with POD/ROM, 20 modes
per � uid variable were obtained from the set of 100 snapshots de-
scribed earlier. An explicit time-accurate solver was used for the
shock region. No overlap was required between the near � eld and
the shock region. An attempt to introduce one cell of overlap ev-
erywhere on the common boundary produced an instability in the
full system. The location of an internal boundary in a region of
strong nonlinear � ow behavior can cause solver instabilities.22 A
wide variety of C1 constraint combinations were tried. Whereas
some combinations stabilized the overlapping boundary between
the near � eld and shock region, none produced a particularly accu-
rate � ow� eld. The number of constraintswas limited by the number
of modes used per � uid variable.When more constraintswere used,
the reduced-order Jacobian was not invertible.

Accuracy, Order Reduction, and Compute Time

The domain sizes and the POD/ROMs for the near and far � eld
were not varied. As a result, ef� ciency was only affected by the
number of domain updates for the near and far � eld, the time-step
size for the shock region, and the type of constraint. Each solver is
referred to by these key values for convenience.For example, con-
sider the POD/ROM/DD with a Courant–Friedrichs–Lewy (CFL)
of 0.9 in the full-order shock region, the near-� eld domain up-
dated every 40 shock region time steps, and the far-� eld domain
updated every 80 time steps. The CFL of 0.9 yielded a time step
size of 4:6455¡3 (nondimensional time units), and the near and
far � eld were updated every 0.186 (which is 40 £ 4:6455¡3) and
0.37 (which is 80 £ 4:6455¡3), respectively. This was denoted as
the full-case 0.9/0.186/0.37 model. When the full-order shock re-
gion is replaced by a POD/ROM with CFL of 2.5, the CFL of
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Fig. 6 Modeled panel response.

2.5 yielded a time step size of 1:29¡2, and the near and far � eld
were updated every 0.52 (which is 40 £ 1:29¡2) and 1.04 (which
is 80 £ 1:29¡2), respectively. This POD/ROM/DD is denoted as
the POD-case 2.5/0.52/1.04 model. Both the full-case 0.9/0.186/
0.37 model and the POD-case 2.5/0.52/1.04 model use the same
POD basis for the near- and far-� eld domains.

The panel LCO from full-case 0.9/1.48/2.96 and POD-case
2.5/2.06/4.13 models are compared at the one-half-chord position
and the three-quarter-chordposition in Fig. 6. The use of either C1

or C2 constraintsprovided similar accuracy.The moving shock was
replicated accurately within the shock region for both models. Re-
gional time stepping over a range of near-� eld updates from 1/50
to 1/12 of one LCO period yielded similar accuracy. Models dis-
cussed in this section generally used larger time steps to improve
computational performance. The CFL improvement to 2.5 was the
largest allowed for stability of the POD/ROM in the shock region.
Much larger CFL increases with the subspace projection method
have been reported2;4 in the literature; however, these cases did not
involve a moving shock.

Although both models produced panel responses with similar
accuracy, the full-case implementation produced results with less
computationalcost. The full-systemsolver required 358.08 s (wall-
clock time) to compute25 nondimensionaltime units on a 500-MHz
Compaq workstation.This modeled one cycle of the panel LCO. In
contrast, the POD case 2.5/2.06/4.13 required133.15 s, whereas the
full case 0.9/1.48/2.96 required 128.96 s. The full-order solver was
more ef� cient in the shock region than the explicit time integration
of POD/ROM. The CFL increase to 2.5 was not large enough to
compensate for this inef� ciency.

The use of C1 constraints approached the ef� ciency of C2 con-
straints when the number of far-� eld updates was reduced. C2 con-
straints requiredadditionalmultiplies to update the Jacobian for ev-
ery Newton iterate.For example, the full-case0.9/0.185/0.37 model
required67 far-� eld updates.The C2 constraintswere 21.4% slower
for this case. When the number of far-� eld updates was reduced to
eight for the full-case 0.9/1.48/2.96 model, the C 2 constraint case
was only 5.79% less ef� cient. The additional multiplies with C2

constraints were offset by a reduction in DOF (� ve C1 constraints
vs only one C2 constraint),and the C2 constraintsrequiredonly two
Newton iterations in comparison to four with C1 constraints.

The full system had 64400 DOF, the full-case models had
7701 DOF (including � ve C1 constraints),and the POD-case mod-
els had 125 DOF. The 88% DOF reduction for the full-case models
resulted in a 66% reduction in computational cost with this solver
implementation. The repeated use of the full-order function call in
the Newton iterations prevented the cost reduction from reaching

88%. The additional reduction in DOF for the POD-case models
did not result in additional cost savings for this solver implemen-
tation. Although the explicit integration scheme demonstrated the
existence and adequacy of the POD modes for capturing a moving
shock, a Galerkin-type approach should be investigated for possi-
ble computational savings in proportion to the reduction in DOF.
Extrapolated to three dimensions,an Euler solver of similar � delity
in all three dimensions would yield approximately5,300,000DOF.
A similar domain decomposition would produce full-case models
with approximately 335,000 DOF. This would be a 93% reduction
in DOF for the full-casemodels, slightlybetter than the 88% reduc-
tion in DOF for the two-dimensional implementation. Similarly, a
slightly better than 66% reduction in computational cost could be
expected from the full-case implementation in three dimensions.

Robustness

The panel phase plot in Fig. 7 demonstrates the ability of
POD/ROM/DD to capture nonlinear behavior at ¸ D 2500, which
was the value used for POD training. When POD is used in the
shock region, the � ow� eld near the panel is constrained by the
projection into the reduced-order space. The � ow� eld does not
damp high-frequency structural responses in the same way as the
full-order � ow� eld, resulting in the differences between the full-
system and the POD-case responses on the phase plot. Reducing
the number of DOF used for the structural model could improve
the panel responseby eliminating high-frequencystructural modes.
At Mach 0.95, LCO states exist for any value of ¸ greater than
1750 (Ref. 4). Only static panel de� ections have been identi� ed
for ¸ < 1750. POD/ROM/DD trained with snapshots from LCO at
Mach 0.95 and ¸ D 2500 were able to model the LCO states at Mach
0.95; however, neither POD/ROM/DD could produce a static solu-
tion for ¸ < 1750. The snapshots only contained data from an LCO
� ow� eld, and the resulting modes could not be linearly combined
to produce a static solution.

Next, the extendabilityof the POD/ROM/DD was explored. The
POD basis from training at ¸ D 2500 (the same model used for re-
sults shown in Fig. 7) was used to model the panel response for
¸ D 2000. With reference to Fig. 2, this parameter variation encom-
passestwo-thirdsof theLCO parameterspace.No effortwas made to
optimizePOD trainingfor accuracyor robustnessover theparameter
space. This example demonstrates the robustness of POD/ROM in
the presence of moving shocks with suboptimal training.

The panel response and phase plot for ¸ D 2000 is shown
in Fig. 8. The full-system LCO response at ¸ D 2500 is shown
with a thick dashed line. At ¸ D 2000, the panel response is re-
duced, and the phase plot � ts within the phase plot for ¸ D 2500.

Fig. 7 LCO for ¸ = 2500.
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Fig. 8 LCO for ¸ = 2000 (trained at ¸ = 2500).

Both POD/ROM/DD track this trend, while preserving the non-
linear panel behavior at the new value of ¸. The extendability of
POD/ROM/DD across this large change in parameters using this
simple, suboptimal approach demonstrates the potential for future
analysis of � ows with moving shocks using this implementation.

Conclusions
A reduced-ordermodeling approach was successfully applied to

a transonic aeroelasticpanel in a � ow� eld with large shock motion.
Domain decompositionenabled the use of POD/ROM for this case.
The non-Galerkin solver used a constrained optimization approach
to link internal boundaries. Time-accurate results were obtained
using different time steps for each domain, and the reduced-order
� uidmodelwas coupledto thepaneldynamicsto provideanaccurate
reduced-orderaeroelastic system.

An 88% reduction in DOF resulted in a 66% computational sav-
ing for implementations using the full-system model in the region
of the � ow� eld containing the shock. When POD/ROM was used
in the shock region, there was an almost three orders of magni-
tude reduction in DOF (from 64,400 to 125). Both cases yielded
accurate panel LCO and replicated correct motion of the tran-
sonic shock. In addition, both cases accurately modeled transonic
LCO states corresponding to parameter values not used for POD
training.

This robustnessacrossa parameterspacedemonstratedthe poten-
tial of POD/ROM for analysis of transonic LCO. The ultimate goal
of such analysis is to characterizethe LCO brancheswithin a param-
eter space, especially in attempting to identify regionsof supercriti-
cal LCO, where LCO states can exist at parameter levels lower than
those observed in the gradualonset of LCO. At supercriticalparam-
eter values, both static and LCO solutions are possible, depending
on the initial condition, with larger disturbancesgenerally exciting
the LCO state. Whereas linear analysis can be used to predict LCO
onset values, it can not determinethe existenceof supercriticalLCO
states. Analysis with POD/ROM may eventuallybe able to identify

these LCO states and allow adjustment of parameters to preclude
LCO within the performance envelope of the aeroelastic system.
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