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Reduced-Order Modeling of an Elastic Panel in Transonic Flow
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Reduced-order modeling is applied to a transonic aeroelastic panel that experiences oscillatory motions of a
normal shock. Two-dimensional, transonic inviscid flow over an elastic panel produces transonic limit-cycle oscil-
lations over a range of panel parameters. Proper orthogonal decomposition,in concert with domaindecomposition,
is shown to produce an accurate reduced-order model for the coupled aeroelastic system. Panel flutter in the tran-
sonic regime results in a large streamwise movement of a transonic normal shock across the panel surface. The
accuracy and order reduction of the reduced-order model is quantified. In addition, the computational savings for
this implementation is documented, and the robustness of the reduced-order model to changes in a panel parameter

is explored.

Nomenclature

constraint type

plate stiffness, E;h3/12(1 — v?)

vector of X-axis and Y-axis fluxes

Young’s modulus

total energy, E7q/poott’,

modified flowfield expression for time-accurate
Newton’s iterations

function evaluation for Newton’s iterations
vector valued function for overlapping domains
panel thickness

unit vector, x direction

unit vector, y direction

reference length

Mach number; number of degrees of freedom (DOF)
for reduced-order model

number of DOFs for full system

pressure, Py/ poo 2,

array of pressure differentialson panel

number of snapshots used in proper orthogonal
decompositionfeduced-ordermodel

flux calculation from the Euler equations
matrix of flowfield data, or snapshots

vectors of s values on panel

panel deflection speed, w

vector mapping overlapping variables

time, /L

full- and reduced-order vector of conserved
flow variables
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fluid velocity components, i/t and vg/ Voo
matrix of eigenvectorsof ST §

vectors of w values on panel

normal panel deflection, w, /L

full- and reduced-order vector for a single fluid variable
spatial coordinates, x, /L and y,/L

structural state array, [§ , Wit

flow variables U and U, augmented with Lagrange
multipliers

expression containing structural parameters
ratio of specific heats, 1.4

global time step determined to preserve stability
for the smallest node spacing

matrix of singular values of ST S
nondimensional dynamic pressure, p., L /psh
Lagrange multiplier for ith constraint

mass ratio, peou* L /D

Poisson’s ratio 0.3

density, ps/ pso

structural density

reduced-order mapping matrix
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Subscripts

dimensional quantity

constraint index

section number within domain
structural quantity

time derivative

spatial derivative

overlapping domains

base flow

freestream quantity, dimensional
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Superscripts

n =
over
v =

index to increment discrete time steps
overlapping portion of domain
index to increment Newton iterations

Introduction
EDUCED-ORDER modeling for transonic aeroelastic prob-
lems is challenging because of unsteady movement of normal
shock waves. Reduced-order methods that linearize the governing
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equations will produce errant results if the shock moves by a sig-
nificant amount. Recent work showed that reduced-order mod-
els (ROMs) based on proper orthogonal decomposition (POD)
can accurately handle the moving shock case,'” but a domain
decomposition(DD) techniqueis necessary to overcome difficulties
in translating discontinuities in the flowfield. The POD/ROM/DD
isolates the region of the flowfield containing the shock and models
the region, either at full order, or with a special POD/ROM con-
structed with sufficient data to allow shock motion.

In this paper, the DD approach with POD/ROM is applied to
an aeroelastic panel in crossflow. A nonlinear coupling of the two-
dimensional Euler equations and the von Kdrmén plate equation
simulates the dynamics of flow over a flexible panel. The inviscid
flow produces transonic limit-cycle oscillations (LCO) for certain
panel parameters and freestreamconditions. Panel flutterin the tran-
sonic regime further produces a transonic shock that traverses the
panelsurface. Previous work® on this aeroelastic panel configuration
neglected reduced-order modeling of the transonic case because of
the difficulties in handling moving shocks. The objectiveis to apply
POD/ROM/DD to the transonic aeroelasticpanel and assess the per-
formance of the reduced-ordersystem in accuracy, order reduction,
and computational expense. The robustness of the POD/ROM/DD
to changes in panel dynamic pressure A is explored to evaluate the
model’s utility for design analysis.

Numerical Formulation

In this section, the governingequationsfor the structuraland fluid
dynamics are described, DD is developed, and an overview of POD
is provided. Emphasis is given to the reduced-orderimplementation
of the fluid dynamics model, which includes a development of con-
strained optimization required to couple adjacent domains across
internal boundaries.

Structural Dynamics Equations
Two-dimensional flow over a semi-infinite, pinned panel of
length L was considered. Panel dynamics were computed with von
Karman’s large-deflection plate equation (see Ref. 5), which was
cast in nondimensional form using aerodynamic scales L and u,
1 1.
(—3<x <3k

A ox* * x? or?

uo*tw 0w w 1
—p (1)
y M,

L 2
2 (0w
N, =« — ) dx (1b)
_1\ 0x

Panel deflections w(x) and velocities s(x) = w(x) were computed
as a functionof x and 7, given the values of the parameters i, A, and
h/L, such that

a = (6p/M) (/L)1 —v?) @

Two boundary conditions were enforced at the panel endpoints
(x==%1): w=0and 3*w/0x*>=0.

The structural dynamics equations (1a-2) were discretized and
placed in first-order form to facilitate numerical integration. Spatial
discretizationwas accomplishedwith second-orderaccurate,central
differences, and the midpoint rule was used to compute the integral
in the definition of N,. A uniform distribution of grid points was
assumed. A modified central-differenceformula explicitly enforced
the end conditions. Excluding the endpointstates, the discrete struc-
tural variables were collocated into arrays W and S and then into
the structural state Y,. The values of (1/y M2 — P) at panel grid
points were also collected into array P. With these definitions, the
structural equations took the first-order form

._0 Ly uP
I

where [ is the identity matrix and L y is a nonlinear matrix operator
given by

Ly=s—-=—+N )
X

Here, d/0dx represents central-difference,spatial discretization.

Equations (3) and (4) were integrated in time using an Euler
implicit method* that was first-order accurate in time. The Euler
implicit method used the value for pressure provided by a coupled
fluid model:

Fy=|1-a OLNHHYY" Al "l 20 s
x()——flo _f_tO_()

where Y =Y"*+!. The nonlinearity in Eq. (5) was accounted for
through subiteration. ¥ was iteratively computed using the chord
method, with Ly evaluated about an undeflected panel state, as
represented by LS;:

I AOL?V yrti—yv F. (Y’ 6
—tlo Y =—-F(Y") (6)

The matrix LS, was computed and lower-upper (LU) decomposed
once at the start of the time-integration procedure to increase the
efficiency with which Eq. (6) was solved. The chord method con-
verged quickly for the transonic cases considered due to the small
deflections of the panel (<2% of the panel length). Four subiterates
applied at each time step were generally sufficient to force F; to be
near machine zero.

A fine structural grid of 101 interior points (103 points, including
the endpoints of the panel, where w = s = 0 was enforced) was used
to discretize the panel. The large number of structural grid points
reduced the effects of translating fluid values to structural nodes.

Fluid Equations

The dynamics of fluid flows are governed by the Navier—Stokes
equations for viscous flow, or the Euler equations for inviscid flow.
The two-dimensional Euler equations are given here in strong con-
servation form®:

U+E +F,=0 )

o
v=|" (82)
ou )
2
E=| PP F= ‘;TP (8b)
)

L(ErpivP)uJ (Er + P)vJ

Here, pu is the x-direction momentum, pv is y-direction momen-
tum, and E7 is total energy per unit volume.

The solution of the flowfield was approximated using a finite
volume approach.Itrequired the integral form of the Euler equations
shown here®:

d A
—fUdV+f(Ei+Fj)~d8=0 9)
dt 14 AV

Solutions of the full system were obtained by numerically solving
the integral Euler equations for small volumes within the flowfield.
Spatial discretization results in a computational mesh with many
small volumes, or cells. Stability of the numerical scheme necessi-
tated small cell sizes. Each fluid variable at every cell represents a
separate degree of freedom (DOF).

Within each cell, the integral form of the Euler equations reduce
to the following, assuming no grid deformation,

dS;
dA[.j

d A A
Ui+ D _Ei+Fi])- =0 (10)

sides
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The flux terms E; ; and F; ; were computed using first-orderRoe av-
eraging (see Ref. 6). Row-by-row ordering is used to collocate flow
variables at each spatial cell location to a correspondinglocationin
a column vector, producing an overall vector of flow variables U (7).

Time integration across the computational mesh is used to obtain
flow solutions. This is accomplished with a first-order-accurate,for-
ward Euler approximation.Small time steps combined with the large
number of DOF make design analysis and control impractical with
this type of numerical method.

Because the Euler equations are linear in the time derivative, and
quasi linearin the spatial derivative >’ the spatial derivativesand the
time derivativesin Eq. (7) can be separated to form an evolutionary
system. To accomplish this, the spatial terms are grouped to form a
nonlinear operator R acting on the set of fluid variables. The fluid
dynamics from Eq. (10) can then be expressed as

i R[U(z 11
5 = XUE] (11
Equation (11) is referred to as the full-system dynamics.

The paneldynamics were enforced using a transpirationboundary
condition for (—% <x< %, y =0) (Refs. 8 and 9). The transpiration
boundary condition replaces the solid wall with blowing or suc-
tion designed to mimic the effect of a solid boundary. For a static
case, the no-flow-through condition at a solid wall implies that the
flow momentum is tangent to the solid surface for all of the cells
adjacent to the surface. Flow momentum is injected (blowing) or
removed (suction) such that the flow momentum at the solid surface
is turned (via vector addition) as though the solid wall were present.
For dynamic cases, additional blowing is required because the wall
velocity imparts additional momentum to the flow, in excess of the
momentum needed to turn the flow tangent to the solid surface 3°
Transpiration boundary conditions are valid for small wall deflec-
tions, and they are a convenientway to model dynamic solid bound-
aries without moving grids. Moving grids require special treatment
in the POD/ROM formulation.!?

The finite volume fluid solver and the transpiration boundary
condition were validated using both computational results and ex-
perimental data. Validation of subsonic performance was accom-
plished by comparison with experimental data.!! Transonic perfor-
mance was validated by comparison with results from COBALT.60,
a widely used production code. Validation of the aeroelastic panel
response is addressed later in the paper.

Grid Generation

The elastic panel model was inserted into the solid boundary at
—1<x< % and y =0. A square domain of dimension —23.668 <
x <23.668 and 0 < y < 24.6 was used for this research. (The panel
length was one nondimensional length unit.) The large domain was
intended to containall of the flow dynamics, and the arbitrary choice
of approximately 25 chord lengths in all directions mimics the do-
main used by other authors for the same problem.*!? Extending the
domain to include all flow dynamics facilitates the use of character-
istic boundary conditions for the outer portion of the domain. The
results may not be generalbecause the domain size impacts the panel
response. The structured grid used 141 nodes along the solid surface
and 116 nodes extending to the freestream. The spacing of the grid
points increased geometrically from the solid wall in the normal
direction. In the streamwise direction, the grid spacing was held
constant at Ay, =0.0125 over the entire panel and was increased
geometrically upstream and downstream of the panel position.

Fluid-Structure Coupling

The structuralsystemfrom Eq. (3) was loosely coupledto the fluid
system from Eq. (11) through the transpiration boundary condition.
The structural solver was explicitly stepped forward in time by A¢
from time level ¢, to time level #, ;| using the pressure value on the
panel from the fluid system. An extrapolated panel pressure value
was used to avoid time-lagging errors that can arise in this coupling
scheme.!? P" (the pressure value at time level n) was used to estimate
P! +1 by

Pi = P"+ AP (12a)
AP =P — P! (12b)
Pt =2p - P! (12¢)

P! was used to update the panel deflection and velocity ¥* !,
which were incorporatedinto the transpiration boundary condition.
The fluid system was then time stepped to update the flowfield to
U"*!. This sequence was repeatedly performed to integrate the cou-
pled system and produce time-accurate results.

The fluid system dominated the computation time required to
producesolutionsfor the coupledsystem. Time-step size was limited
by the stability of the flow solver, and the number of DOF for the
flow solver (64,400) was far larger than the structural model (202).
As such, the focus of this research was to couple an ROM of the
flowfield to the full-order structural model and produce an accurate
aeroelastic panel response with less computational expense.

Domain Decomposition

The solutiondomain was dividedinto sections to facilitate the use
of POD with the moving transonic shock. Isolation of the transonic
shock was the primary goal of the DD. Because the transonic shock
was always attached to the panel, the region of the flowfield directly
above the panel was identified as the shock region. In addition, DD
improved the computational performance when obtaining unsteady
solutions from the reduced-order solver. Different time steps were
employed for these different regions of the flowfield to minimize
the number of solver iterations.!>-14

The solution domain was divided into three regions to form the
POD/ROM/DD. The geometric shape of the region did notinfluence
the solver performance, and so regions formed by the intersection
of rectangles were used for simplicity. The results presented were
generated using the DD depicted in Fig. 1. The large outer region is
denoted sectionI and is called the far field. Section II is the middle
region whose outer boundary is defined by three line segments.
These line segments are the sides of a rectangle with corners at the
(x, y)pairs (—3,0), (—=3,4),(2.5,4),and (2.5, 0). Section Il is called
the near field, and it will be solved more frequently than the far field
to update the internal boundary shared with section III. Section III
contains the flow over the panel. Its outer boundary is a rectangle
with corners at the (x, y) pairs (—0.7, 0), (—0.7, 0.65), (0.7, 0.65),
and (0.7, 0) and is the aforementioned shock region. A small shock
forms on the upstream portion of the panel, and traverses over a
large portion of the panel’s length. This is the moving shock of
interest for this analysis, and it is confined entirely to section III.
No overlap is included in this decomposition. Domain overlap will
be addressed later. Section I contains 9300 cell centers, section 11
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contains 4886 cell centers, and section III contains the remaining
1914 cell centers.

Because the domain was divided into three sections, analysis for
the POD/ROM/DD involved solving three smaller fluid problems
that were linked by internal boundaries. Internal boundaries were
handled with ghost cells that were filled with the corresponding
values from the adjacent domain. Domain overlap was necessary
under certain conditions that will be outlined later in the paper. The
DD approach produced flexibility in choosing the set of snapshots
and number of modes used to create the POD/ROM foreach section.

Proper Orthogonal Decomposition

POD is a technique to identify a small number of DOF that ad-
equately reproduce the behavior of the full system. The greater the
reduction in DOF, the faster the computer produces a solution for
each time step. Time-step size for stability can also be improved
using POD because the application of POD modes exclude some
of the high-frequency content that brings instability. A summary
of POD as it applies to a spatially discretized flowfield follows. A
detailed description of POD is available in the literature !>16

For simplicity, consider only one fluid variable w(¢). Because the
value of w(#) is obtained using numerical approximation, w(?) is
spatially descritized using N nodes and collocated into a large array
denoted w(t). For this fluid variable, the full-system dynamics in
Eq. (11) are depicted hereafter,

LS 13

% X0 (13)
POD produces a linear transformation ¥ between the full-system
solution w, and the reduced-ordersolution for this fluid variable w,
given by

w(t) = Wy + Ui (1) (14)

Note that W is not time varying where w and w are functions of
time 7. The POD reduced-order variable w(f) represents deviations
of w(t) from a base solution W. The subtraction of W, will result
in zero-valued boundaries for the POD modes wherever constant
boundary conditions occur on the domain.

W is constructed by collecting observations of the solution
w(t) — Wy at differenttime intervalsthroughoutthe time integration
of the full-system dynamics. These observations are called snap-
shots and are generally collected to provide a good variety of flow-
field dynamics while minimizing linear dependence. The snapshot
generation procedure is sometimes referred to as the POD training
period.2

A total of Q snapshots are collected from the full-system
dynamics. These are vectors of length N. The set of snapshots de-
scribe a linear space that is used to approximate both the domain
and the range of the nonlinear operator R. The linear space is de-
fined by the span of the snapshots.!” POD identifies a new basis for
this linear space thatis optimally convergent. To identify the POD
basis, the snapshots are compiled into a N x Q matrix S, known
as the snapshot matrix. The mapping function W is then developed
using

STSV = VA (15)
v =SV (16)

Here, A is the diagonal matrix of eigenvalues. To eliminate redun-
dancy in the snapshots, the columns of V' corresponding to very
small eigenvaluesin A are truncated. The matrix of eigenvalues A
is also resized to eliminate the rows and columns corresponding to
the removed eigenvalues.If Q — M columnsof V are truncated, the
resulting reduced-order mapping W will be an N x M matrix. This
reduced-order mapping is a modal representation of the flowfield.
The modes are the columns of W that are discretized spatial func-
tions fixed for all time. The vector w(?) is a time dependent set of
coefficients representing the coordinates of w(t) projected into the
truncated linear space described by the POD basis.

The final step is to recast the governing equations to solve for
the coefficients. Several methods are contained in the literature?

and selection of the appropriate implementation depends on the
solution strategy. Both implicit and explicit time-accurate method-
ologies were used in this research.!~* Implicit time stepping was
an efficient way to handle the nonshocked regions of the domain
decomposed flowfield (sections I and II). Here the dynamics were
benign enough that the reduced-orderJacobianrequiredno updates.
Explicit time stepping was used for the shock region because the
moving discontinuityin section III was too strong a nonlinearity for
the implicit scheme to capture efficiently

Explicit Implementation

Explicit integration for the full-order solver was accomplished
using the first-order-accurate, forward Euler time integration:

w' = w" + ATR(W") (17)

For this analysis, a non-Galerkin approach was used for simplicity.
The non-Galerkin approach, also known as the subspace projection
method (see Ref. 18), uses the full-system dynamics and a forward
difference approximationto yield the following reduced-orderflow
solver:

Wl =W 4+ AtA TN (VT V)TLVISTR(SV W) (18)

The pseudoinverseof V is shown assuming modal truncationis em-
ployed. The inverse of A and pseudoinverse of V' exist assuming
modal truncation is employed to eliminate the zero-valued eigen-
values of ST S and their corresponding eigenvectors.!® Notice that
AT (VTV)TIVTST from Eq. (18) is equivalentto (W7 W)~ 1wT,

The solution to the Euler equations in two dimensions re-
quires simultaneous solution for four fluid variable vectors w(z).
The reduced-order mapping components for each fluid variable
(S and V) were collocated as blocksinto larger matrices of the same
name. This producedthe following variantof Eq. (18), which applies
to all four fluid variables simultaneously:

U = 0"+ AT (VTV)TIVISTRSVEY)  (19)

The subspace projection method relied on the full-system function
evaluation R at each time integration step. As such, the order of
each integration step was not actually reduced. Subspace projection
allowed for study of POD accuracy and order reduction without
the use of Galerkin projection. Also, this reduction technique can
greatly increase the time-step size allowed for stability; therefore,
the total number of time steps required for the explicittime-accurate
solver to reach steady state can be significantly reduced?

Implicit Implementation

A chord method implementationwas used to obtain time-accurate
solutions implicitly. The chord method is essentially Newton’s
method with numerically approximated Jacobians. Although the
equations governing the reduced-orderoperator R(U) are never ex-
plicitly obtained, the value of the reduced-order operator at any
time can be obtained from Eq. (19) using the full-system function
evaluation R:

RO) = A" (VTV) 'VTSTR(SVD) (20)
Consider the implicit time integration function F':
F(Un+l)=Un+l _Un_AtR(Un+l) (21)

The value of U" ™! thatresultsin F(U" ') = 0 is the solution for the
flowfield at time ¢, + At from U”. The solution is readily obtained
from Newton iterations. The Newton iterations (for subiterate from
v to v+ 1) at reduced order are shown hereafter:

FWO) = A" (VIV) VT ST F(UY) (22a)
NN |
. [dE@) ] & ~
AU = [L} F@Uv) (22b)
a0
U =0+ AU (22¢)
Ut = Uy + w0 (22d)

Notice that the full-systemfunction call is required for each Newton
iteration. The reduced-order Jacobian is not updated between
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Newton iterations to reduce computational cost. The reduced-order
Jacobian can be quickly identified using the full-systemdynamics,

YO L1y Gy - AR (232)
dU dU
U=vU+U, (23b)
M =y Ath(A (23¢)
U U

dF(F) = iA[A’l(VTV)’IVTSTF(U)] (24a)

au U
ilC)) —dF(E])) (24b)

= — AN VTY) YT ST
daUu

For computationalpurposes, it was efficientto obtainthe reduced-
order Jacobian numerically from Eq. (24b). The Jacobian was ob-
tained using a central-differenceapproximation.The computationof
dF (U)/dU onlyrequired2M functioncalls (M being the number of
reduced-order variables). The reduced-order Jacobians for domain
sections I and II were obtained using the initial flowfield. They did
not require recalculation throughout the entire time integration.

Implicit Analysis with Overlapping Domains

Constraints must be introduced to enforce smoothness on the in-
ternal boundary between adjacent domains modeled with implicit
POD/ROMs. The domain coupling provided by the use of ghost
cells and the full-system dynamics is not sufficient to ensure con-
tinuity along internal boundaries for the implicit implementation.
To formulate the technique, consider the case where the internal
boundary between two adjacentregions overlap, such that the outer
boundary of one region extends beyond the inner boundary of the
adjacentregion by a few cells. When computing solutions for each
individualdomain atreduced order, the flowfield from both domains
should match in the overlapping portion of the flowfield. When this
does not occur, a constraint can be included to force the flowfield
sections to match in the overlap region.

Consider Uy, and Uy, as adjacentdomains with a shared internal
boundaryI". The domains overlap on the internal boundary, and the
sections combine to form the fluid vector U,

Uy,
U= 25
|:Us2i| (25)

Two constraint options are considered. The first constraint C' can
be written as

c'(U) = ZU(k)Sl —Uk)s» =0 (26)

kel

Here, k represents the index number of the fluid variables within
the flow vector Uy that correspond to the overlapping region I'.
This constraint is similar to requiring the mean difference be zero
on the boundary, and C! approximates the L' norm. Notice that
the absolute value is not included. This weakens the constraint be-
cause negative errors can be canceled by positive errors of equal
magnitude; however, neglecting the absolute value improves com-
putational performance. The solver formulation will use the first
and second derivatives of the constraints [refer to Eq. (34)]. When
the C! constraints are used without the absolute values, the first and
second derivatives are a constant function and zero, respectively.
The C! constraint formulation allows the Jacobian to be precom-
puted before solver integration, significantly reducing computation
time. If an absolute value is introduced, the first and second deriva-
tives are both functions of the flow variables, and precomputing the
Jacobian is not possible. Instead of using the absolute value on the
C! constraint, the squared difference is constrained to zero, which
is written as

() = Z[U(k)m U5l =0 27

kel

The C? constraint formulation is similar to requiring the variance
to be zero on the boundary, approximating the L? norm. Similar
to including the absolute value on the C! constraint, the use of the
C? expression provides a much stronger constraint, and the com-
putational load is increased because the first and second derivatives
are functionsof flow variables. The derivative expressionsare much
simpler with C? constraints than the case of absolute value on the
C! constraints, which is why this formulation is preferred.

For the time-accurate case, a functional £(U) is defined such that

de(U)
——— —F 28
U ()] (28)
where F comes from Eq. (21). Solving for the critical values of £ (U)
is equivalentto solving F'(U) =0, that is, finding the flow solution
of interest.

C! Constraints

With reference to the function F' from Eq. (21) and the functional
£(U) from Eq. (28), a series of C! constraints were introduced to
enforce equality within a subset of the overlap region. Lagrange-
constrained optimization minimizes £(U) subject to the constraints
through the use of Lagrange multipliers %;, introduced as addi-
tional DOF. One Lagrange multiplier was used for each constraint.
Lagrange-constrained optimization'® modifies £(U) by adding the
linear constraints to form the functional Q(y):

1
0 = tWs) + Yy _n(Us—UP)" T, (29)

i=1
The solution vector is augmented to include the A;,

Us

y=| % (30)

)

For each constraint, the summation operator in Eq. (26) was im-
plemented by taking the dot product of a vector 7; with the vector
difference (Us — U;*"). For some number of constraints /, a total
of I vectors U™ and T; were required with the same dimensions
as Us. For the ith constraint, U7**" contained flow values from a
subset of the overlapping portion of the adjacent domain section.
The goal of the ith constraint was to force Uy to match the flow
values in U**". These flow values were collocated to the vector lo-
cations in U?¥*" that corresponded to the identical locations within
the overlapping region of Ug. T; contained the number 1 in each
fluid variable location corresponding to the selected fluid variables
from the adjacentdomain, collocated into U;**". Zeros were placed
everywhereelsein 7. The dot productof T with (Ug — U?**") tended
to zero when the flow variablesin Us matched U?**". Otherwise, the
dot product produced a small scalar residual. Fluid values for U?"*"
could be chosen as required to produce a reasonable solution. Each
constraintcould apply to any combinationof the four fluid variables,
over any portion of the overlappingregion.

The critical values of Q are the values of Ug and A; such that

1
F(Us) + Y AT,
1

_sop_| @-orn

G(y)
dy (US _ Ugver) TT2

=[] (3D

over 4
(Us-v9)' 1,
As long as the constraints are linearly independent, and the fluid
problem has a unique solution, the critical value will be the unique
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minimizing function for Q (Ref. 19). The reduced-order mapping
includes the Lagrange multipliers,

Ys [0] [0] [0] (O] Us

0] 1 0o 0 O Al
y=1[10 0 1 0 01| A (32)
0] o 0o . 0 :
L[O] 0 0 0 1 J L A J
which is rewritten as
y=¥y (33)

Newton iterations are used to solve the reduced-order system for
y. The flowfield is obtained by expanding U with reduced-order
mappings for each section, after which the A; are discarded. The
full-order Jacobian dG (y)/dy, shown hereafter,

dF(Us) | N\~ , #*Ci(Us)  dCi(Us) dC;(Us)
3 LAy
dUs dU% dUs dUs
dc
46, @s) o ... o
dUs
dc
46, Ws) o ... o
L dUs i
(34)

is used to obtain the reduced-orderJacobian, as follows:

dG (3 ~1.dG
5 _ (7,07 202
dy dy

(35)

For computationalreasons, this formulation[similar to Eq. (24b)]
is used to identify the reduced-orderJacobian from the full system.
For C! constraints,dG (y)/dy = [dG(y)/dy]¥, is as follows:

[dF .
# T1 T2 500 T[
dUs
T
aG) | TM¥s 0 0 .0 6
ap TIwg 0 0 ... 0
| Tfws 0 0 ... 0

where dF(Us)/dUs is obtained from dR(Us)/dUs by using
Eq. (23c¢). Notice that this expression is independent of the solu-
tion vector y. It can be precomputed and does not require updates
during the time integration.

C? Constraints

A modification to the development is required to use C? con-
straints. This modification is presented hereafter. Again, a series of
constraints are considered. The ith constraintbecomes

= (Us - ) - (Us —U™) =0 37
and the Lagrangian is minimized as follows:

1
Q) = tWs) + Y _ 2 (Us —U2*) (Us - UP™)  (38)

i=1

(0] (39)

d
G(y) = —%;y) -

_ ) -
FUs)+2 ) % (Us — UP)
1

G(y) (s —0r)' (U5 = 0r) (40)
y =
(vs - v (Us - 57)

(v - v (s - 7)

The Jacobian for the Newton iterations comes from Eq. (35), where
dG(y)/dy is found to be

[ dF(U. -
I

2(Us — U™
o (v -0r)

i=1
: (41)
2(Us — U)Wy 0 0 0

The W ¥ termis simply the matrix W overwritten with zero for any
mode value not pertaining to the subset of the overlap region and
the fluid variables constrained by the ith constraint. Unfortunately,
this implementationrequires that the Jacobian be reformed for each
Newton iteration because dG(y)/dy is now a function of the un-
knowns Us and A;. Even though dF (Us)/dUs will not need to be
recomputed, the additional multiplies within the 2(Us — Uf"“)T g
term and the

I
2 )\-[ \IJ[over

i=1

term will make this implementation less efficient.

Results

The full-order, transonic LCO behavior is described first, fol-
lowed by a discussion of the POD/ROM/DD solver implemen-
tations. Observations are made on the effectiveness of overlap,
boundary-constrairt types, and domain-specific time steps. The ac-
curacy, order reduction, and computational savings for a variety of
implementations are discussed. Finally, the robustness is explored
by observing the change in solver accuracy as panel dynamic pres-
sure is modified.

Full-System Transonic LCO

Variations in panel dynamic pressure A constitute the parameter
space of interest for the transonic panel analysis. Increased val-
ues of A correspond to decreased panel stiffness. Panel response
at Mach 0.95 across this parameter space is illustrated in Fig. 2.
For comparison, Fig. 2 contains data obtained from the literature
for the same problem.**° The maximum panel deflection amplitude
at the one-half-chord point is shown for a range of A. For A less
than 1750, panel stiffness was sufficient to prevent time oscilla-
tory behavior. Any initial panel deflection and velocity eventually
damped to a static deflection state, with the panel deflected either
upward or downward depending on the initial condition. In Fig. 2,
the two static deflection branches are evident for A < 1750. Values of
A above 1750 resulted in oscillatory panel behavior with the proper
initial condition, otherwise the panel deflection settled at the down-
ward deflected static solution. Figure 2 illustrates how the upper
static branch evolves into LCO, whereas the lower branch remains
static when 1750 > A > 2500. The midchord amplitude of the up-
ward panel deflection during LCO is about 15% lower than other
cases reportedin the literature. The dissipationin the first-order Roe
solver provides more damping of the high-frequency panel deflec-
tions than the higher-ordersolvers used in the archived publications.
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This additionaldampingis the primary cause of the muted panel de-
flections. The muting of the upward panel deflection is not as promi-
nent in the static case. Otherwise, the dynamic and static behavior
of the aeroelastic model for both static and LCO solutions from
the full-system simulation are shown to be in good agreement with
results found in the literature for the same problem.*?° The muted
panel deflections were not a concern because the transonic moving
shock was the nonlinear feature for analysis. The POD/ROM will be
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Fig. 2 Panel response with changing dynamic pressure.
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shown to match the full system accurately, and a full-system model
with higher fidelity could be inserted without loss of generality.

With A =2500, the full-system simulation producedthe transonic
LCO shown in Figs. 3 and 4. A portion of the LCO cycle exhibits a
moving shock 2! The panel deflections correspondingto the portion
of LCO containing a moving shock are shown in Fig. 3. The plot
of Cp shows the shock motion progressing from Figs. 3a-3d. The
dissipationin the first-orderRoe’s solver slightly smears the moving
shock. A stronger shock also develops at the end of the panel during
this portion of the LCO. Because this was a stationary shock, it did
not pose a significant problem for the POD/ROM/DD.

Figure 4 shows the panel time history at the three-quarter-chord
point. Transonic LCO was established very quickly from a small
paneldeflectionin freestreamconditions. The initial panel deflection
was a small, downward sinusoidal panel deflectionof 1 x 1073, The
LCO was well established by 15 s, which was about one-half of the
period of a single panel oscillation. This extremely rapid LCO onset
makes time integration an efficient implementation for analysis of
this case. Figure 4b is a phase plot of panel velocity and position at
three-quarterchord. Strong nonlinearitiesare evidentin the upswing
of the panel (at point I), and again after the crest at points II and III
on the downswing. These appear as loops or peaks in the phase map.

Solver Implementation

Two cases of the POD/ROM/DD were considered. The first case
modeled the shock region at full order, the second case modeled
it with POD/ROM. The far field (section I) and the near field
(section II) used the same ROM for both cases. Both the far and
near fields used an implicit, time-accurate solver, and both were
modeled with POD/ROMs trained by 100 snapshots taken at evenly
spaced intervals over one complete cycle of the panel LCO. Five
modes per fluid variable were adequate for both sections, resulting
in 20 DOF in the POD/ROM for each. The far- and near-field do-
mains were overlapped by three cells everywhere on the common
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Fig. 3 Moving transonic shock.
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Section 1

Section 2

Fig. 5 C! constraints.

boundary. Constraints were required when the time steps were dif-
ferent, otherwise the near and far field were effectively modeled
with a single domain using five DOF per fluid variable.

Both C? and C! constraints were implemented on the shared
boundary between the far and near fields. A single C? constrainton
density over the entire overlapping region was sufficient to produce
accurate results. Touse C! constraints,a careful selectionof subsets
within the overlap region was required. A series of five subsets, with
one C! constraintfor each subset, were used to couple the near- and
far-field domains. Density was the constrained fluid variable. Each
subset contained a vertical column of three cells, positioned on the
top portionof the internal boundary as shownin Fig. 5. Each vertical
strip is referred to as a “staple.” The x locations for each staple were
—1, —0.25, 0, 0.25, and 1. Each staple comprised a single cell in
width and three cells in height to traverse the overlap region in the
vertical direction.

Solver implementation produced several insights regarding the
effective use of C! constraints. First, the size of the subsets played
a critical role in the effectiveness of the C! constraints. Also, the
position of each constrained subset was determined by the flow

dynamics. In general, regions of high dynamics on the boundary re-
quired some form of constraint, whereas regions of lower dynamics
required none. The careful placement of a few localized C! con-
straints could stabilize the entire boundary.

When the shock region was modeled with POD/ROM, 20 modes
per fluid variable were obtained from the set of 100 snapshots de-
scribed earlier. An explicit time-accurate solver was used for the
shock region. No overlap was required between the near field and
the shock region. An attempt to introduce one cell of overlap ev-
erywhere on the common boundary produced an instability in the
full system. The location of an internal boundary in a region of
strong nonlinear flow behavior can cause solver instabilities>? A
wide variety of C! constraint combinations were tried. Whereas
some combinations stabilized the overlapping boundary between
the near field and shock region, none produced a particularly accu-
rate flowfield. The number of constraints was limited by the number
of modes used per fluid variable. When more constraints were used,
the reduced-order Jacobian was not invertible.

Accuracy, Order Reduction, and Compute Time

The domain sizes and the POD/ROMs for the near and far field
were not varied. As a result, efficiency was only affected by the
number of domain updates for the near and far field, the time-step
size for the shock region, and the type of constraint. Each solver is
referred to by these key values for convenience. For example, con-
sider the POD/ROM/DD with a Courant-Friedrichs-Lewy (CFL)
of 0.9 in the full-order shock region, the near-field domain up-
dated every 40 shock region time steps, and the far-field domain
updated every 80 time steps. The CFL of 0.9 yielded a time step
size of 4.645573 (nondimensional time units), and the near and
far field were updated every 0.186 (which is 40 x 4.645573) and
0.37 (which is 80 x 4.645573), respectively. This was denoted as
the full-case 0.9/0.186/0.37 model. When the full-order shock re-
gion is replaced by a POD/ROM with CFL of 2.5, the CFL of
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2.5 yielded a time step size of 1.2972, and the near and far field
were updated every 0.52 (which is 40 x 1.2972) and 1.04 (which
is 80 x 1.2972), respectively. This POD/ROM/DD is denoted as
the POD-case 2.5/0.52/1.04 model. Both the full-case 0.9/0.186/
0.37 model and the POD-case 2.5/0.52/1.04 model use the same
POD basis for the near- and far-field domains.

The panel LCO from full-case 0.9/1.48/2.96 and POD-case
2.5/2.06/4.13 models are compared at the one-half-chord position
and the three-quarter-chordposition in Fig. 6. The use of either C!
or C? constraints provided similar accuracy. The moving shock was
replicated accurately within the shock region for both models. Re-
gional time stepping over a range of near-field updates from 1/50
to 1/12 of one LCO period yielded similar accuracy. Models dis-
cussed in this section generally used larger time steps to improve
computational performance. The CFL improvement to 2.5 was the
largest allowed for stability of the POD/ROM in the shock region.
Much larger CFL increases with the subspace projection method
have been reported®* in the literature; however, these cases did not
involve a moving shock.

Although both models produced panel responses with similar
accuracy, the full-case implementation produced results with less
computational cost. The full-systemsolverrequired 358.08 s (wall-
clock time) to compute 25 nondimensionaltime units on a 500-MHz
Compaq workstation. This modeled one cycle of the panel LCO. In
contrast, the POD case 2.5/2.06/4.13 required 133.15 s, whereas the
full case 0.9/1.48/2.96 required 128.96 s. The full-order solver was
more efficient in the shock region than the explicit time integration
of POD/ROM. The CFL increase to 2.5 was not large enough to
compensate for this inefficiency.

The use of C! constraints approached the efficiency of C* con-
straints when the number of far-field updates was reduced. C? con-
straints required additional multiplies to update the Jacobian for ev-
ery Newton iterate. For example, the full-case 0.9/0.185/0.37 model
required 67 far-field updates. The C? constraintswere 21.4% slower
for this case. When the number of far-field updates was reduced to
eight for the full-case 0.9/1.48/2.96 model, the C? constraint case
was only 5.79% less efficient. The additional multiplies with C?
constraints were offset by a reduction in DOF (five C! constraints
vs only one C? constraint),and the C? constraintsrequired only two
Newton iterations in comparison to four with C! constraints.

The full system had 64400 DOF, the full-case models had
7701 DOF (including five C! constraints),and the POD-case mod-
els had 125 DOF. The 88% DOF reduction for the full-case models
resulted in a 66% reduction in computational cost with this solver
implementation. The repeated use of the full-order function call in
the Newton iterations prevented the cost reduction from reaching

88%. The additional reduction in DOF for the POD-case models
did not result in additional cost savings for this solver implemen-
tation. Although the explicit integration scheme demonstrated the
existence and adequacy of the POD modes for capturing a moving
shock, a Galerkin-type approach should be investigated for possi-
ble computational savings in proportion to the reduction in DOF.
Extrapolated to three dimensions,an Euler solver of similar fidelity
in all three dimensions would yield approximately 5,300,000 DOF.
A similar domain decomposition would produce full-case models
with approximately 335,000 DOF. This would be a 93% reduction
in DOF for the full-case models, slightly better than the 88 % reduc-
tion in DOF for the two-dimensional implementation. Similarly, a
slightly better than 66% reduction in computational cost could be
expected from the full-case implementation in three dimensions.

Robustness

The panel phase plot in Fig. 7 demonstrates the ability of
POD/ROM/DD to capture nonlinear behavior at A =2500, which
was the value used for POD training. When POD is used in the
shock region, the flowfield near the panel is constrained by the
projection into the reduced-order space. The flowfield does not
damp high-frequency structural responses in the same way as the
full-order flowfield, resulting in the differences between the full-
system and the POD-case responses on the phase plot. Reducing
the number of DOF used for the structural model could improve
the panel response by eliminating high-frequencystructural modes.
At Mach 0.95, LCO states exist for any value of A greater than
1750 (Ref. 4). Only static panel deflections have been identified
for A < 1750. POD/ROM/DD trained with snapshots from LCO at
Mach 0.95 and A = 2500 were able to model the LCO states at Mach
0.95; however, neither POD/ROM/DD could produce a static solu-
tion for A < 1750. The snapshots only contained data from an LCO
flowfield, and the resulting modes could not be linearly combined
to produce a static solution.

Next, the extendability of the POD/ROM/DD was explored. The
POD basis from training at A =2500 (the same model used for re-
sults shown in Fig. 7) was used to model the panel response for
A =2000. With reference to Fig. 2, this parameter variation encom-
passestwo-thirdsof the LCO parameterspace.No effort was made to
optimize POD training for accuracy orrobustnessover the parameter
space. This example demonstrates the robustness of POD/ROM in
the presence of moving shocks with suboptimal training.

The panel response and phase plot for A =2000 is shown
in Fig. 8. The full-system LCO response at A =2500 is shown
with a thick dashed line. At A =2000, the panel response is re-
duced, and the phase plot fits within the phase plot for A =2500.
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Both POD/ROM/DD track this trend, while preserving the non-
linear panel behavior at the new value of A. The extendability of
POD/ROM/DD across this large change in parameters using this
simple, suboptimal approach demonstrates the potential for future
analysis of flows with moving shocks using this implementation.

Conclusions

A reduced-order modeling approach was successfully applied to
a transonic aeroelastic panel in a flowfield with large shock motion.
Domain decompositionenabled the use of POD/ROM for this case.
The non-Galerkin solver used a constrained optimization approach
to link internal boundaries. Time-accurate results were obtained
using different time steps for each domain, and the reduced-order
fluid model was coupledto the paneldynamicsto providean accurate
reduced-order aeroelastic system.

An 88% reduction in DOF resulted in a 66% computational sav-
ing for implementations using the full-system model in the region
of the flowfield containing the shock. When POD/ROM was used
in the shock region, there was an almost three orders of magni-
tude reduction in DOF (from 64,400 to 125). Both cases yielded
accurate panel LCO and replicated correct motion of the tran-
sonic shock. In addition, both cases accurately modeled transonic
LCO states corresponding to parameter values not used for POD
training.

Thisrobustnessacrossa parameter space demonstratedthe poten-
tial of POD/ROM for analysis of transonic LCO. The ultimate goal
of such analysisis to characterizethe LCO branches within a param-
eter space, especially in attempting to identify regions of supercriti-
cal LCO, where LCO states can exist at parameter levels lower than
those observedin the gradual onset of LCO. At supercritical param-
eter values, both static and LCO solutions are possible, depending
on the initial condition, with larger disturbances generally exciting
the LCO state. Whereas linear analysis can be used to predict LCO
onset values, it can not determine the existenceof supercritical LCO
states. Analysis with POD/ROM may eventually be able to identify

these LCO states and allow adjustment of parameters to preclude
LCO within the performance envelope of the aeroelastic system.
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